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The characteristics of the turbulence in the
mixing region of a round jet

By P. O. A. L. DAVIES, M. J. FISHER AND M. J. BARRATT

Department of Aeronautics and Astronautics, University of Southampton
(Received 25 July 1962)

Measurements in the mixing region of a 1in. diameter cold air jet are described
for Mach numbers ranging from 0-2 to 0-55. The statistical characteristics of the
turbulence in the first few diameters of the flow may be expressed in terms of
simple kinematic similarity relationships. These are based on the jet diameter
and the distance downstream from the jet orifice as length-scales, and the inverse
of the local shear as a time-scale. The experiments show that the integral time
scale of the turbulence in a frame convected with the maximum energy of the
turbulent motion is inversely proportional to the local shear.

The most interesting result obtained is that the local intensity of the tur-
bulence is equal to 0-2 times the shear velocity. This velocity is defined as the
product of the local integral length-scale of the turbulence with the local shear.
The local intensity is defined as the r.m.s. value of the local velocity fluctuations
divided by the jet efflux velocity. It was found that the length-scale is pro-
portional to the distance from the jet orifice, while the maximum shear is also
related to this distance as well as to the jet efflux velocity. These two similarity
relations break down close to the jet orifice and change beyond the first six or
so diameters downstream. The convection velocity is not equal to the local mean
velocity but varies slowly over the region of maximum shear when it is just over
half the jet efflux velocity. The measurements of other observers fit the relation-
ships obtained quite well. From these relationships it is possible to calculate the
noise generated by the mixing region of a given jet directly, using expressions
derived by Lilley (1958).

1. Introduction

The fundamental equations relating the noise produced by a jet to the tur-
bulence in the highly sheared mixing region have been derived by Lighthill
(1952, 1954) in his papers on sound generated aerodynamically. In the first paper
he considers the exact equations of motion in a compressible fluid and compares
these with the equations of sound propagation in a medium at rest. He shows
that the exact equations may be written in the form

(1.1)

where Ty = pv;v;+ Dy — a Po 0,

©j?
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and v, is the velocity component in the z; direction, p the density, a, the velocity
of sound in the fluid at rest and p,; the compressive stress tensor. He also shows
that at the low Mach numbers the dominant term in the stress tensor 7}; is pv;v;.

The momentum flux, f pv;v;dV, can vary from point to point. But, fora given
v

volume in the absence of solid boundaries the momentum p»; which is entering
at one point must be balanced by momentum leaving elsewhere on the boundary.
One therefore expects this mechanism to generate sound like two almost can-
celling acoustic dipoles, that is like an acoustic quadrupole. Elements like 7},
represent so called ‘longitudinal’ quadrupoles, and elements like 7}, lateral
quadrupoles.

Using the relationship that, for an observer at a distance | X| large compared
with the dimensions of the flow | Y|, the second space derivatives of 7}; can be
replaced by second time derivatives. Lighthill shows that the solution to (1.1)

becomes IX Yl
p= 4ﬂa4x3f ot2 “( a, )dV(Y)’ (1.2)

where the integral is taken with retarded times so that only the sound from
different parts of the volume V arriving at the same instant are added by the
observer. In estimating this integral we know that, in a turbulent flow, velocity
measurements at nearby points are well correlated but those at points more
remote from each other are almost uncorrelated. We can therefore divide the
turbulent flow into a number of regions such that the strengths of the quad-
rupoles within any one region are well correlated, but the strengths at points in
different regions are uncorrelated (but see Lighthill 1954). Over a single group
of correlated quadrupoles the pressure amplitude will add linearly while from
uncorrelated quadrupoles only the r.M.8. amplitudes or energy intensities com-
bine linearly. The extent of each independent quadrupole distribution can be
taken as roughly the size of a typical energy-bearing eddy. For a typical fre-
quency  the ratio of eddy size to wavelength is wl/a,, which tends to be small if
the Mach number is small since ! represents the amplitude of a typical velocity
fluctuation. If this condition is satisfied it is usually possible to ignore variations
in retarded time in distributions of non-zero total strength.

The above arguments all apply to the case where the Mach number is small.
In a high-Mach-number flow Lighthill showed next that the sound radiated
must be represented by moving quadrupoles convected at a speed U,. The dis-
cussion is taken further in a later paper (Lighthill 1962). The radiation field
relative to the position from which the sound is emitted by a moving quadrupole
is expressed by

— Py = sl (t—-—~) 4mr3(1 —~ M, cos 6)® (1.3)

p pO - 1, 7 atz ao / c ’ .
where the function Tj(f) is the strength at time {, » is the distance from the
observer to the point of emission, § the angle between this direction and the
direction of motion and M, the convection velocity U, divided by the speed of
sound a,. The effect of convection appears only in the (1 — 3, cos &) factors which
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increase the sound emitted forwards somewhat more than they decrease that
emitted backwards.

The overall intensity will be made up from the sum of the R.M.s. pressure
components from each of the correlated source regions. Williams (1961) has shown
that the total number of quadrupoles must be multiplied by (1 — M, cos6) to
give that number whose radiation arrives simultaneously. The intensity from
each quadrupole will contain a factor (1 — M, cos )%, and therefore the direc-
tional distribution of intensity will carry a factor (1 — M, cos )~ over and above
that characteristic of the quadrupoles in the absence of convection.

In his second paper on the subject Lighthill (1954) considered the noise gener-
ated by the mixing region of a turbulent jet. Here he showed that turbulence of
a given intensity could generate more sound in the presence of a large mean shear.
He deduced that the dominant term in 9(pv,v;)/dt is the term

P(0v;[0x; + 0v,[0m;) = pey;, (1.4)
which means that we can use the substitution
0T, [0t2 ~ (Op[ot) e;; (1.5)

to estimate the sound generated by unit volume of turbulence. This relation,
however, does not take us much further since there are no suitable techniques for
measuring the velocity and pressure covariance directly to determine the dis-
tribution of 0%7};/0t2. This still awaits the development of experimental techniques
for measuring static pressures directly. '

Developing ideas put forward by Proudman (1952), Lilley (1958) showed
how velocity correlations may be used to estimate the acoustic power output.
These can be derived from measurements made with a hot-wire anemometer.
Applying Lighthill’s last result, (1.5), to the jet where the dominant rate of
strain is &, (corresponding to a velocity gradient 0U [dx,) Lilley showed that the
intensity per unit volume of turbulence is given approximately by

I(r) ~ {0-02sin26 cos?/pa§x?(1 — M, cos 0)%} L3, 28, pPva, (1.6)

where L;; is the longitudinal integral velocity scale of the turbulence and « is
an anisotropy factor, probably of order 0-4. Thus it is seen that the noise output
of a jet can be estimated if certain characteristics of the turbulence can be
specified. Since it has not been possible to proceed far in this direction theoretic-
ally, these must be determined experimentally. The techniques for measuring
these quantities are described in § 2 of this paper.

- Many conclusions of the theory have already been verified experimentally,
and some of the observed characteristics of jet noise are explained by Lighthill’s
theory. The high-frequency high-intensity sound is emitted mainly from the
regions of the jet where the shear is high, and this is explained by the amplifying
effect of shear. The observation that the sound is mainly radiated at an acute
angle of the jet is explained by the radiation field pattern of convected quadru-
poles. Finally, dimensional arguments based on the radiations from stationary
turbulence show that the acoustic power output should vary as the eighth
power of the jet velocity. This is close to the observed variation of peak intensity

22.2
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and would at first sight confirm that agreement between theory and experiment
is very good. However, as Lighthill (1962) and Curle (1961) have pointed out,
this dependence is only achieved experimentally when the quadrupole con-
vection effect is included. Thus, in a direction normal to the jet axis, where the
convection effect is absent, exponents ranging from 5-5 to 7 are obtained in a
large number of experiments (see Lilley & Westley 1952 and Gerrard 1956).
It is suggested that this discrepancy may be due to a decrease in turbulence
intensity at high subsonic Mach numbers, for which there is some experimental
evidence.

Lilley (1958) has used the comprehensive turbulence measurements by
Laurence (1956) to estimate the noise output of a jet and obtained fair agreement
with the main experimental results. Laurence surveyed a cold subsonic jet for
adistance of about 20 jet diameters downstream of the exit and presented measure-
ments of the velocity profiles, turbulence intensities and spectra for a set of
Mach numbers up to 0-7, the majority of the results being at 0-3. He also obtained
the longitudinal and lateral velocity correlations and the single-point auto-
correlations in a fixed reference frame for the whole region. He transformed the
auto-correlation and compared this with the space correlation, and obtained good
agreement in some instances. The results he reports are for a region for which the
present investigation shows a frozen turbulence pattern to be a fair approxi-
mation. Others have used this result to obtain an estimate of the convection
velocity appropriate to the analysis of the type discussed above.

This report describes similar measurements at the somewhat higher Mach
number of 0-5, repeating Laurence’s measurements of intensity and velocity
distribution in more detail and including measurements with space separation
and time delay to establish the convection characteristics more completely.
The auto-correlations and spectra must be determined in terms of a frame of
reference moving with the convection velocity U,, which is defined as the apparent
velocity of transport of optimum correlation. The turbulence characteristics
required to define, for example, the integral scale L;, can be obtained from the
space correlations. The majority of the measurements have been confined to the
first few jet diameters where the shear is high and where most of the high-
intensity noise originates. Single and pairs of hot wires have been used for all
the velocity measurements and most of the results obtained from correlation of
the hot-wire signals. Some of the experimental techniques have been developed
at Southampton over the past seven years and are described in some detail in
§ 2 of the paper. The experimental results are given in §3, where comparisons
are made with previous work, while new results are discussed in § 4.

2. Experimental techniques

The experimental methods fall naturally into two groups, one being those
employing single hot wires, and the other those with pairs of hot wires. Single
hot wires can be used to measure the turbulence intensity, and the frequency
spectra, either by using a narrow-band filter or transforming the auto-correlation.
Pairs of hot wires can be used to define the size and shape of the regions in which
the turbulent velocities are correlated. In addition measurements of space



Turbulence in the mixing region of a round jet 341

correlations at retarded times can be used to define a convection velocity. It is
then possible to obtain spectra and time scales in the frame moving with the
turbulence. Before describing each of the above measurements in detail a brief
description of the equipment is given, together with an estimate of the accuracy
of the measurements. This is desirable because an understanding of the per-
formance of the equipment plays a vital part in the interpretation of the measure-
ments obtained.

2.1. Measuring equipment

The hot-wire anemometers used for the measurements were co-called constant-

temperature instruments where the wire is kept at a constant resistance in a

Wheatstone bridge circuit fed in closed loop by a high transconductance d.c.
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Ficure 1. Calibration of hot-wire anemometer.

amplifier. The anemometer can be conveniently calibrated in any steady flow
and the core of the jet one diameter from the orifice was used for this purpose.
The output is non-linear but it was linearized by a function generator con-
sisting of a chain of biased diodes and summing amplifiers. The chain was
adjusted experimentally and the performance was quite good, as can be seen
from figure 1.

A good approximation for the uncompensated system is

eoc ut, 30ft./sec < u < 500ft./sec,

where ¢ is the voltage output and » the mean velocity. The hot-wire calibration
fitted this relation to within +29,, while the actual calibration curve was
repeated with many wires to an accuracy of + 1%, The linearized signal gave
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a similar repeatability of +1 9, when small variations in wire cold-resistance
had been balanced out on the bridge. The wires generally failed by being broken
on impaet by a small particle in the flow. They were, however, run at a tem-
perture high enough to oxidize tungsten slowly which caused a rapid change of
calibration just before they burned out. This did not occur until they had run
many hours, and was not a frequent cause of failure. Measurements made just
before a wire failure were always repeated.

The hot wires were made from 5 p-diameter tungsten wire with the ends copper-
plated leaving 2 mm bare at the middle. These were then soldered across the ends
of fine-pointed conductors 4 mm apart to make a probe. Each probe was mounted
on a separate micromanipulator, allowing independent adjustment of each wire.
Wire position was adjusted to 0-1 mm, and reset to these limits using a pair of
crossed telescopes as a fixed reference. This precision was essential as the jet
was only lin, in diameter and the shear region near the jet orifice quite thin.

Careful measurements at Southampton have shown that the wire heat loss
was not very sensitive to the relative flow direction over the range defined above.
This is in good agreement with Sandborn & Laurence (1955). Both sets of results
show that, with the airflow at 60° to the wire axis, the bridge voltage was only
reduced by 39, compared with that for flow normal to the wire at the higher
velocity, and by 59, at the lower velocity stated above. With the flow parallel
to the wire axis, the signal was reduced by 309, compared with the normal
setting. These results indicate that the bridge output depends partly on the
velocity components along the wire and not only on the normal component as
has often been assumed.

Further experiments indicated that heat conduction to the supports repre-
sented a substantial proportion of the heat loss from the wire, giving rise to a
temperature gradient along the wire. Any substantial velocity component along
the wire modifies the temperature gradient considerably, the overall effect being
toincrease the end loss. This effect for a wire of given dimensions will be much more
serious for tungsten wires which have a much higher thermal conductivity than
for platinum ones. This can be seen by comparing the results given above with
those reported for platinum wires by Webster (1962). The interpretation of
hot-wire measurements must therefore be made with some care. For practical
purposes, however, an anemometer with its axis normal to the mean velocity,
provided the mean flow is greater than two or three times the larger velocity
fluctuations, will respond to the magnitude of the instantaneous velocity and
not to its direction.

The frequency response of the hot-wire amplifier was flat (within 1db) from
d.c. to 80ke/s while the linearizer had a response that was flat (within 0-2db)
from d.c. to 10ke/s. As the observed turbulence frequency spectra level at 10ke/s
was — 20db relative to 1ke/s it was assumed that the bridge voltage followed
the flow velocity with similar phase shift and attenuation for both wires during
the correlation measurements.

The mean voltage was measured with a carefully calibrated voltmeter. A true
R.M.S. voltmeter was used for intensity measurements (a.c. component only) and
a twin-channel tape-recorder for the correlation measurements. Tests showed that
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a 10sec integration time on the correlator gave a reasonably small scatter above
100 cycles, while the two tape-recorder channels were well matched within a
correlation count of + 0-02 when checked between 150 ¢/s and 8ke/s with white
noise. The correlator which has been described in detail elsewhere (Allcock,
Tanner & McLachlan 1962) gives a similar performance (correct within + 0-02)
from d.c. to 10ke/s provided the background noise level is low. Time delays
between correlator channels were provided up to 140msec in 2usec steps.
Provided proper care was taken, it was found that simple measurements could
be repeated to within 2 9, or a correlation count of 0-02, although a larger scatter
on correlation results was observed occasionally. This could usually be traced
to a rise in the relative noise-to-signal ratio on the tape.

2.2. Single-wire measurements

Single wires were used to measure mean velocity, turbulence intensity, spectra
and fixed-point auto-correlations. The spectra and auto-correlations represent
a velocity pattern being convected past the fixed hot wire. Laurence (1956)
discussed the conversion of these measurements to true moving-frame spectra
at some length but there are certain difficulties in doing this as will be seen later.
The chief effect in these experiments is that the high convection velocity in-
creases the bandwidth requirements of the equipment. The moving-frame
spectra can be obtained by other methods which are discussed later (see § 2.3).

Mean velocity measurements. Calibration of the hot wires showed that the
bridge output voltage represented some function of the instantaneous velocity
magnitude |u|, and was for practical purposes independent of the flow direction
provided the wire had its axis normal to the mean velocity vector, U. If the
fluctuating velocity components are v,, v,, v,, then

2 2
[u| = [(U+v)?+0v3+031F ~ U[l +%+%%] ,

ignoring higher powers of the fluctuations than the second. If the hot-wire
system has a linear response so the output voltage e is proportional to |«|, then
the mean voltage & represents the velocity given by

&=k, U1+62], (2.1)

where 8 is of the order v/U, and over bars represent time-mean values. The in-
stantaneous voltage fed to an R.M.s. meter or tape-recorder with the d.c. com-
~ ponent removed is therefore

e—& =k Ul(vy/U) + (62— 6] = ky vy, (2.2)

which defines the resultant turbulent signal with an error of 29, if the three
components of the turbulence have intensities I equal to 0-2; where U is the jet
velocity, —

I = (230, (2.3)

is a convenient definition of turbulence intensity.



344 P.O0. A. L. Davies, M. J. Fisher and M. J. Barratt

For the non-linear hot wire, the relation between actual bridge volts ¢, and
velocity |u| was found to be approximated by

52
en=eb—ea=k2|u|*:k2Ui[ +W+8] (2.4)

where ¢, is the bridge voltage for zero velocity, see figure 1, and ¢, ~ k, Ut to a
better approximation than for the linear wire. The hot-wire signal output then
becomes, when recorded on tape,

ep—8, = %kz U——%vl’ (2.5)

which involves a more detailed calibration to estimate », accurately than with
a linear hot-wire system.

Turbulence intensity. For a linear system, the intensity can be obtained
directly. Defining the r.M.S. signal

(e} = {2t = b, UL} U?) + 00— 2828+ (827
and ignoring the terms in §* which must be nearly zero, this gives
= ()fe. (2.6)
Similarly for the non-linear anemometer,
L = 4{(en—2, )} e (2.7)
We also note that the average axial component intensity I can be obtained as

= B{U@ - U@}/ UP.

However, the method is hardly an accurate one as it involves a small difference
in large magnitudes.

Turbulence spectra. The recorded turbulence signal given by either of equations
(2.2) or (2.5) can be analysed by a narrow-band frequency analyser to give the
turbulence spectrum. The auto-correlation of the signal can be defined as

R, Tf % (0 ”1T)d v 2.8)

where T is the integration time of the correlator, 7 the time delay and v, being
regarded as a function of time only. Usually, the signal levels on the two channels
in the correlator may differ slightly, and if these are denoted by v, and v,, then

”1(0)”1(7)/;’? = ”a”b/(”?x’vg)’},

and although it will not be restated explicitly this process is generally implied
when describing correlation coefficients.

The spectral density function F(n) may also be determined from the Fourier
transform of R, namely

F(n) = 4fm R_cos 2mntdr. (2.9)
0
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This method is more laborious experimentally than the former one, but can be
used to obtain spectral density in a moving frame, provided R, is specified in this
frame of reference. This was determined experimentally as detailed later (§ 2.3),
and requires two-wire measurements.

Lateral component of mean velocity. Throughout the experiments, it has been
assumed that the mean velocity direction is predominantly axial. As a check on
this the lateral mean velocity V was estimated from the rate of change in the
streamwise direction of the radial distribution of axial velocity. Using the axial
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Radial distance
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Mean radial velocity ratio V/U,
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Radial distance from jet axis, Y/D

Ficure 2. Radial component of mean velocity.

symmetry of the jet, the equation of continuity of mean flow can be integrated
to give
1 ([ oU
Vir)= - fo [rl 535_1] dr,

where 0U [0z, is estimated at each radius 7. The estimated values of ¥ have been
plotted against distance from the axis, Y /D, where D is the jet diameter. The
velocities are rendered non-dimensionless by dividing by the core velocity U,.
These results are plotted on figure 2 for two distances X[D from the jet orifice.
As can be seen, the assumption that the mean velocity is axial is reasonable
except at the outer edge of the mixing region. In this part of the flow, equations
(2.2) to (2.7) will become unreliable. It has been shown in the Introduction that
this region is unlikely to contribute a large portion of the total noise output
as the shear is small, so it has not been included in the detailed experiments.

2.3. Two-wire measurements

Two-wire measurements can be used to define the length-scales of the turbulent
velocity fluctuations and the auto-correlation in a moving frame. As seen from
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equation (2.2) the correlations will always refer to the fluctuating velocities in
the mean flow direction, which is taken to be along the jet axis.

Space correlations and space scales. The signals from two hot wires separated
by a distance z can be correlated to define the region over which the velocities
at the two points are strongly related. These results can then be used to define
a typical ‘eddy’ size, or the integral length-scale L,. The axial-velocity space
correlation coefficient is defined as

R =lfT7ﬂ—)_”—1(i”-)dt (2.10)

fe
T v?

with similar definitions for displacements in other directions. Here v;(0) and v, ()
are each regarded as functions of time. The space-scale L, can be defined by

L, =f R, dz, (2.11)
1 0 1

which can be related to the turbulence scale L,; of equation (1.6) provided the
three components of the space correlation are known.

Cross-correlation. If the signal from one of the two wires is also delayed a time
7 before being correlated with the other, then correlations with a space separation
and time delay are obtained. The cross-correlation is therefore defined as

R
p 1 f 00,00, (x,7) 5,

0 v}

3]

If the values of R,, are plotted against time delay for a series of increasing wire
separations the whole family of curves define an optimum correlation envelope
in time. The convection velocity of the energy-bearing eddies can be found by
measuring the time delay at which each wire-separation curve touches the
envelope. The ratio of wire separation to this time delay then defines the con-
vection velocity for this separation. The envelope is also the auto-correlation
of the energy-containing eddies R, in a reference frame moving with the convec-
tion velocity U,. The moving-axis integral time-scale, which defines the rate at
which the turbulence pattern changes in time, is then

L = f "R, dr. (2.13)
0

Alternatively an estimate of the time-scale may be obtained by fitting an
exponential function to the correlation curve as discussed in detail by Laurence
(1956). This is helpful when R,, does not reach zero within the range of the
experiments. In this case the time-scale becomes

L, = 7[R, = 1/e] (2.14)
and similarly L, = z[R, = 1/e]. (2.15)
These estimates were used later to define the ratio of time- to length-scales.

If this ratio is large it implies that the turbulence may be regarded as a fixed
pattern moving at the convection velocity. This gives a simplified description
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of the turbulence that was first proposed by Taylor (1935). An alternative method
of finding the convection velocity U, is to plot isocorrelation contours of R, on
the (z, 7)-plane. These will be skewed at an angle to the 7-axis and the tangent
of this angle will again define the conveetion velocity. The Fourier transform of
the cross-correlation envelope will give the turbulence spectrum function in the
moving frame. This can then be related to the spectrum of the noise field of the jet.

3. Experimental results

The aim of the experiment was to determine the distribution of shear, length
scales, turbulence intensity and the convection velocity throughout the jet.
There are nine components of the length-scale and three intensity components,
but the present series of experiments has been restricted to the measurement of
the axial scale and the intensity of the axial fluctuations. Itis clear that measure-
ments of all components are required for a complete statistical description of
the turbulence structure, but it seems reasonable to assume that the components
are all related. Laurence’s measurements indicate that the axial components
are the largest ones.
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Fiecure 3. Jet flow geometry.

The general structure of a circular jet is well known and when the density of
the jet is the same as that of the surroundings is similar for all jets (Townsend
1956). As shown on figure 3, a mixing zone of intense turbulence surrounds a
cone of potential flow, which extends for about 4 diameters from the jet outlet.
In the potential cone the mean velocity is equal to the jet exit velocity Uj. The tur-
bulence intensity at the jet axisrises steadily from a very low value at the orifice but
has reached one-quarter of the maximum intensity by 3 diameters downstream.
At large distances from the orifice, the intensity is uniform across the middle half
of the jet and then falls steadily to the boundaries (Townsend 1956). The mixing
zone boundaries spread at a constant angle, and the jet continues to spread at a
constant angle for very great distances from the orifice. The edges of the jet are
not smooth but covered by a random distribution of relatively large discrete
eddies which appear to increase in scale downstream with the general increase
in jet dimensions. It has been well established that the jet diameter is the scale
parameter for similarity of jet geometry.

Some of the measurements of length-scale, shear and intensity repeat the
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measurements obtained by Laurence in a larger jet (3} in. diameter) at a Mach
number of 0-3, and confirm the kinematic similarity of the jet flow for the first
few diameters even to details of the turbulence.

3.1. Mean velocity and shear measurements

The distribution of mean shear was estimated from mean velocity profiles
measured throughout the jet. Although the mean velocity appears to be a rela-
tively simple quantity to measure, to do so accurately is difficult, being subject
to the errors indicated by equation (2.1). Measurements of the velocity profile
with a Pitot tube are also subject to errors. One of these, the displacement of
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the effective Pitot centre due to shear, can be estimated (Davies 1957) while
errors due to the yaw sensitivity of the Pitot cannot, at least according to present
knowledge. For this reason hot-wire measurements are likely to be as accurate
as those with a Pitot, and perhaps better where both shear and turbulent intensity
are high. However, check readings were made with a total-head tube giving
results which seemed to agree with the hot-wire measurements quite satisfactorily.

Both linearized and non-linearized hot-wire anemometers were used to deter-
mine velocity profiles, the results differing slightly in the manner predicted above
(§ 2.2), the largest difference being near the radial position Y/D = 0-4. Mean
dimensionless profiles measured at 1-5, 3 and 4-5in. downstream of the orifice
for two Mach numbers are plotted on figure 4. This illustrates the sort of scatter
that can be expected from individual measurements, which tends to conceal
any variation with Mach number. The corrected profile, taken from the results
at 3in. is also included on figure 4. This indicates the order of the errors in the
velocity measurements due to the characteristics of the hot-wire anemometer
which have been discussed previously. The corrections required seem small but
modify the shear distribution significantly as can be seen from figure 5, where
the gradient of the two profiles is plotted.
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Careful analysis of all the results from velocity profile measurements also
indicates some variation of shear with Mach number, though this has not been
determined exactly, but it seems that, for example, doubling the Mach number
does not quite double the shear. The same tendency can be seen in Laurence’s
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Ficore 5. Radial distribution of mean shear.
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measurements for velocity profiles in the range 0-2 < M, < 0-7 with a 3-5in.
diameter jet.

Estimates of the maximum shear have been obtained for the first 10 diameters
of the jet flow, and are plotted on figure 6. To simplify the presentation, the
inverse shear has been plotted as this yields an almost linear relationship and,
furthermore, the improvement in accuracy as the width of the velocity profile
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increases is reflected in the method of presentation. The scatter of the main
results obtained at M, = 0-45 is considerable and illustrates the difficulty of
making accurate shear measurements, but the results appear to follow the general
trend of a straight line. Laurence’s results for a larger jet are also included
together with estimates from the results presented in figure 4. For the majority
of the results, a good fit to the measurements is given by the relation

(BU 0 )max = 8U/(X +hag)sec (M, = 0-45),

where k will depend on the thickness of the boundary layer in the flow leaving
the jet nozzle. For the lin. jet, when M, = 0-45, ka, was found to be 0-4in.,
indicating an origin about 0-4in. upstream from the orifice.

The remainder of the experimental work, with the exception of the turbulent
intensity measurements, was concentrated in the region of high shear. Correla-
tion measurements were made over radial planes 1} and 4} diameters from the
jet orifice as this is where the high intensity noise originates (Lilley 1958 and
Ribner 1958).
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Ficure 7. Radial variation of length scales in a jet.
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3.2. Space correlations and space scale measurements

Space correlations were measured with the linearized equipment, and their
general form was found to be in close agreement with Laurence’s results, so they
will not be illustrated here. The region of the jet surveyed in these measurements
is shown in figure 3. For the majority of readings one wire was fixed at 1-5D
or 4-5D from the jet orifice and the second wire traversed downstream from the
fixed one. The moving wire was also traversed upstream, as a check, giving similar
results, so this was not repeated at every fixed wire position.

The space correlations have been integrated in accordance with equation
(2.11), to give the space-scales. The radial distribution of space-scales is shown on
figure 7, which shows that the variation in axial scale is of the order of 209,
across the mixing region. Axial scale estimates and similar results by Howard
(1959) at Southampton and the two-wire results obtained by Laurence are also
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plotted on figure 8 for comparison. In a few instances the R, vs z curve went
slightly negative. In calculating the length-scales only that part of the curve up
to the first zero crossing was considered, as this gives a consistent definition of
eddy scale. For this definition a fair fit to the results is given by L, = 0-13X
(D < X < 6D). Provided the results are compared on the basis of distance from
the jet orifice and the difference of jet size is ignored, the measurements agree
very well. This is quite reasonable if one remembers that the thickness of the
shear layer is not large compared with the dimensions of the jet, and that its
thickness increases with axial distance downstream. The results also show that
the scales of the turbulence increase almost linearly with axial distance and in
the same way as the general dimensions of the shear layer. This is good evidence
for the strong similarity of the mixing-region flow.

Radial scales "

Distance from jet axis
Y/D=05

Radial and axial scale (in.)

1 \ 1
8 10 12

Distance from jet orifice (in.)

Ficuore 8. Axial and radial scales of axial velocity fluctuations. Longitudinal scales:
[1, ©, Laurence (two wires); x, My = 0-45; 4+, My = 0-3 (Howard); *, M, = 0-22, 0-45.

Laurence’s two-wire estimates of the lateral scale are also included for com-
parison on figure 8. The ratio of these scales in the mixing region is of the order
3:1 axial to radial. The radial eddy scale from his measurements is roughly
one-quarter of the width of the shear layer defined from the intensity measure-
ments. One can explain this difference in length-scales by considering the tur-
tulence in terms of vorticity components, one radial, one axial and one tangential.
- The mean tangential filaments represent the mean shear, and radial filaments
will be the ones strongly stretched by the shear. This implies a feed of energy into
rotations about radial axes, so one could expect the longitudinal and tangential
velocity fluctuations and scales to be larger than the radial ones. The results of
Laurence were at M = 0-3, while the present results were obtained at M = 0-45.
Checks were also made at M = 0-22, and all the results give similar axial scales.
This implies that the space-scale is independent of velocity and depends only
on the position in the mixing region.
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3.3. Frequency spectra

The turbulence signal from a hot wire can be analysed by a narrow-band fre-
quency analyser to give the apparent turbulence spectrum. The frequency spectra
obtained with 3rd octave filters at successive radial positions are plotted on
figure 9. The results at 1-5in. show a small change with radial position, but a
systematic decrease in frequency with increase of radius is more obvious in those
at 4-5in. The change of bandwidth is, however, much less than would be expected
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Ficurr 9. Spectral distribution of hot-wire signal.

if the eddy pattern described in the previous section were to be swept past the
fixed hot wire at the local mean velocity. Alternatively, the eddy scale must
decrease quite rapidly with radius which is not what was observed. This implies
that the convection velocity of the eddy pattern varies much léss rapidly with
radius than the mean velocity.

As outlined in § 2.3, cross-correlations can be used to determine the convection
velocity of the turbulence pattern U,, and at the same time they define the auto-
correlation of the turbulence in a frame moving with velocity U,.
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3.4. Cross-correlations

Cross-correlations were made of tape-recorded signals covering the mixing region
of the jet as indicated by figure 3. A typical plot of the results for M = 0-45 is
given on figure 10. The results at M = 0-22 are similar provided the time-axis
is doubled. This indicates a strong Strouhal-number dependence in the turbulence
signals. Each point on the space correlation representing a wire separation now
becomes a curve on the (R,,,7)-plane, where 7 is the time delay on the signal
from the upstream hot wire.

1-0
Envelope represents auto- correlation (moving frame)

08
Time for signal to
travel 0-5 and 0-6 in.

06

02
Rer o4l 03
0-4
02} 0-5,
0-6

I ] o8 10] 12 14, 1 ] 1

1
—// 100 150 200 250 300 350 400 450 500
50

Time delay 7 (usec)

F1aure 10. Crosscorrelation of axial velocity fluctuations with downstream wire separation.
Numbers on curves represent separation (in.). Y/D=0-5, X/D=1-5 (fixed wire).

The envelope of these curves is the auto-correlation in a frame moving with the
energy-containing eddies at the convection velocity U,. The integral of the
envelope is the moving-axis time-scale of the turbulence, while its Fourier trans-
form is the spectrum function of the velocity fluctuations in a moving frame.
This can be seen if one first considers the form figure 10 would take if the tur-
bulence were a frozen pattern being swept past a stationary hot wire. Each curve
representing a wire separation would rise to a peak value of unity, so the extent
by which they fail to do so is a measure of the rate at which the velocity pattern
changes. The time-scale is therefore related to the rate at which the velocity
pattern is distorted, that is to the rate of generation of new turbulence.

Considering once more the turbulence in terms of vorticity, the generation
of new turbulence is directly related to the rate at which the vortex filaments
are stretched. It has already been demonstrated that the radial filaments are
strongly stretched by the mean shear imply a continuous feed of energy into the
axial and tangential velocity fluctuations. Furthermore, one would now expect
to find a relation between the time-scale and the mean shear.

The moving axis auto-correlations R, for a series of radial positions are plotted
on figure 11 for two distances downstream from the orifice. They show that the

23 Fluid Mech. 15
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minimum time-scale corresponding to the maximum rate of generation of new
turbulence is near the middle of the mixing region, where the shear is greatest.
The relation between the integral time-scale and the inverse of the local shear
0x,/0U, which has the dimensions of time, can be seen best on figure 12. Included
here are results obtained by Howard (1959) at 8 in. from the jet orifice and a result
for M, = 0-22. These results indicate that the integral time-scale is inversely
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Fiaure 11. Moving-axis auto-correlations.

proportional to the local shear and suggest the local shear to be the time-scale
parameter for similarity of turbulence time-scales and velocity fluctuations. The
corresponding length scale is the distance from the orifice.

Equation (1.2) implies that in the absence of solid boundaries a frozen pattern
of turbulence would generate little sound. The results on figure 12 show that the
rate at which the velocity pattern is distorted is proportional to the shear. This
fact with relation (2.9) implies that a relationship exists between the breadth
of the moving-axis turbulent spectrum and the local shear.

Convection velocity. Returning to figure 10, the time delay at which each separa-
tion curve is tangent to the envelope will define a convection velocity U,. Alter-
natively one could plot curves of constant time delay and variable separation
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on the (R, z)-plane. In this case each peak on the curves of constant 7 gives
a separation from which the convection velocity can be estimated.

Finally, the results can be plotted as isocorrelation contours on the (z, 7)-plane.
This is shown in figure 13, where the upper diagram is equivalent to figure 10,
and the slope of the broken line gives the convection velocity U,. In the lower
diagram the contours are replotted with respect to the broken line as an axis and
now represent the isocorrelation contours in a frame moving at U,. The radial
distribution of convection velocity is plotted on figure 14. Here we see the

250 | /
200 |- /

150 -

8X,/oU (usec)

l/shear;

50} / .

)\
0 200 400 600 800

Integral time scale L. (usec)

Figure 12. Variation of time-scale with local shear. +, M, = 0-34, Howard;
®, M, = 0-45 (figure 11); ©, M, = 0-45; x, M, = 0-22 (X = 1-5in., ¥ = 0-5in.).

convection velocity approximates to the mean velocity for a limited region only,
and does not exceed 0-7 of the jet velocity. Near the edge of the jet the convection
velocity is several times the mean velocity. The radial gradient is not so steep
as that of the mean velocity, even in the region of maximum shear. Thus, it
seems reasonable to assume a constant convection velocity in the jet to simplify
calculations of radiation patterns and frequency spectra.

Examination of the hot-wire signal with a cathode-ray oscilloscope provides
an explanation of the difference between mean and convection velocity. This
has been discussed by Richards (1959) elsewhere. Where the two profiles coin-
cide, the signal appears symmetrical. At the edge of the uniform core of the jet
the signal consists of random jumps representing short sudden drops in velocity
well below that of the core. The change is large, of the order of 0-50j;, and the
signal appears as if it were made of two parts with different mean velocities. The
faster moving part represents the steady core velocity U,, with small velocity
fluctuations superimposed on it, while the slower one consists of bursts of violent
fluctuations superimposed on a lower mean value. In the outer part of the jet
the inverse situation exists; here faster moving bursts of intense fluctuations

23.2
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can be seen in a background of smaller fluctuations, which have a lower mean
velocity. The more violent fluctuations, where they occur sufficiently frequently,
will make a substantially greater contribution to the mean signal energy. The
convection velocity will therefore be nearer to that of the large fluctuations, which
contain most of the turbulent energy, than the mean velocity of the flow. That

<@
%
1

e
&
T

@
S
1

Distance from nozzle
X/D=15

@
IN)

Distance from jet axis
Y/D=05

Wire separation—fixed frame (in.)

e -

0 V , |
- 50 0 50 100 156 200
Time delay (usec)

@

Y
T
—

|

0
~50

Wire separation—frame
moving at U, (in.)

Figurk 13. Isocorrelation contours of eross-correlations.

is, it will be lower than the mean velocity towards the core, and higher than the
mean velocity at the edge of the jet. This distribution of convection velocity is
consistent with the frequency spectra plotted on figure 9.

Ratio of time- to space-scales. The cross-correlations give the time-scale of the
turbulence and its convection velocity U,. The product of these quantities gives
a length which is the distance a given pattern travels before it becomes signi-
ficantly uncorrelated with its original form. The ratio of time-scale obtained this
way to the length scale L (equation (2.15)) is plotted on figure 15, which in-
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dicates the way this ratio varies throughout the mixing region. These results are
independent of the value of the jet velocity Uj, although the time-scales L, are not.

Apart from giving the general shape of the isocorrelation contours on figure 13,
these results indicate that the regions of the jet where the turbulence may be
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Fiaure 14. Radial distribution of convection velocity.
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regarded as a frozen pattern convected at U, are limited. They also show that it
can be misleading to obtain the space-scales by transforming the fixed-point
auto-correlations or spectra with the local mean velocity. This explains why the
space-scales Laurence obtained by this method (figure 30 of his paper) decrease
rapidly radially outwards, while those obtained by integrating his two-wire
correlation curves do not.

Finally, the results indicate in a general way the relative magnitude of the
first time-derivative of 7},. Similarly they indicate even more roughly the way
in which the magnitude of the integral in equation (1.2) varies. This suggests
that a given volume of turbulence will generate relatively more noise as the ratio
of time- to space-scales decreases, since this indicates that the turbulent pattern
is changing more rapidly.

3.5. Turbulent intensity measurements
The intensity of the axial velocity fluctuations was determined from the linearized
hot-wire signal with a Dawe true r.M.s. meter. This instrument is specially de-
signed to cope with signals that have a large ratio of peak signal to R.M.8. values.
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Ficurk 16. Comparison of radial distributions of axial turbulent intensity.

This is essential, bearing in mind the form of the hot-wire signal described in § 3.4
above. For the same reason it is probably more desirable to employ a linearized
hot-wire anemometer for the measurements, since the measured intensity will
depend on the slope of the velocity bridge-voltage calibration curve, which varies
with the mean velocity.

The radial distribution of turbulent intensity in the shear layer is best seen in
figure 16 where the results have been plotted on a dimensionless basis. To aid
comparison the intensity has been divided by the maximum intensity, and the
results for various axial distances can then be compared directly. There is a
considerable scatter in the results but a general tendency for the distribution to
become more peaked as the Mach number increases seems to be well defined.
The dependence of the turbulent intensity distribution on Mach number is
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also shown on figure 17. Here the peak intensity has been plotted for two Mach
numbers, and it can be seen that the intensity rises more rapidly near the orifice
at the lower Mach number.

The size of the mixing region is related to the length-scale L, while the time-
scale is related to the local shear 0U/0x,. The product of these two quantities has
the dimensions of a velocity termed hereafter the shear velocity U,, where
U; = L, 0u[ox,. Since the rate of generation of new turbulence is proportional
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Ficure 17. Axial distribution of peak turbulent intensity. Laurence: @, M, = 0-5;
®, My = 0-3. Peak intensity: x, My = 0-20; +, M, = 0-45.

to the shear, it seems likely that a relation exists between the turbulent intensity
and the shear velocity, which proves to be the case. The mean shear is shown on
figure 6 for M, = 0-45, while the corresponding length-scale is given on figure 8,
and thus the axial distribution of shear velocity can be calculated. This has also
been plotted on figure 17, where it can be seen that 0-2U, is equal to the intensity
to a fair approximation. The curve for M, = 0-22 was obtained from two deter-
minations of the maximum shear and then making the assumption that the
maximum shear distribution had the same origin as the results on figure 6. This
relation between turbulent intensity and shear velocity is also supported by the
results on figure 18, where the radial distribution of shear velocity—estimated
from the results on figure 5 with length-scales obtained by interpolation from
figure 7—has been plotted together with the observations of the intensity.
Again the agreement is good leading to the relation (v2)}/U, = 0-2U,/T,.
Laurence also obtained intensity measurements in the same region of the jet
and, although somewhat more scattered, they are of the same order of magnitude
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as shown on figure 17. At 14in. from the orifice his intensity measurements
indicate values between 0-14 and 0-15 which agree with results not shown on
figure 17. His measurements also confirm the decrease of intensity with increase
of Mach number for the first few diameters downstream from the jet orifice.
This implies a decrease in the local shear with increase of Mach number in the
region where the potential core exists. This seems to be indicated by the present
results as mentioned earlier, but further experiments are required to confirm
this relationship.
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4. Discussion of results

Before examining the results it is profitable to reconsider the probable sources
of major errors. Both the linear and non-linear wire signals include a small
proportion of the radial and tangential fluctuations. This will have a significant
effect near the outer edge of the jet, where the mean velocity is small and the local
fluctuations of velocity are relatively large. This will introduce errors in both
the intensity measurements and in the correlations in this region of the flow.
There seems little to choose between the linear and the non-linear hot-wire sets
in this regard, as is shown in § 2.2. The latter requires more careful calibration,
but this is offset somewhat by the smaller contribution from the radial and
tangential intensities. Flow reversal for which there is some evidence in the read-
ings near the edge of the jet will also cause errors in the measurements. A further
source of error is to be found in the problem raised by the form of the signals
themselves. They often have peak levels six to eight times the R.M.s. level, which
means they must be recorded at low Rr.M.s. signal levels to avoid clipping or
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distorting the signal. This places severe limitations on the acceptable noise levels
of the recording equipment, which is most serious in the correlations. If the
noise-to-signal ratio is ¢ (mean square values) on both channels, then the ratio
of the correlation coefficient to that in the absence of noise is 1/{1 +¢).

The general agreement with the measurements made by Laurence and others
is good in regions of the flow where fair accuracy can be expected. The present
results are more detailed than those of Laurence in the regions of high shear.
His results on the other hand extend over a much larger portion of the flow.
For this reason the two sets of results are complementary and provide data for
a wider range of conditions than each set alone. This has been useful in obtaining
similarity relations to describe the turbulence.

4.1. Similarity relations for jet turbulence

The general similarity of the mean velocity profiles of the jet has been well
established for some time. The geometry of the potential core and the mixing
region is similar for all subsonic cold jets and is illustrated in figure 3. It has been
well established that the jet diameter is the scale parameter for similarity of jet
geometry.

Length scales. The axial scale of the turbulence defined by the correlation
measurements was found during the experiment to be fitted by the expression

L, =013X (D < X < 6D). (4.1)

This expression implies a zero scale at the jet orifice which is not really plausible
physically. However, it is very difficult to make measurements close to the jet
orifice, and the scale here will be influenced by the boundary layer in the nozzle.
As this is very thin it was assumed that the scale could be regarded as negligible.
Laurence found the radial scale was about one-third of the longitudinal scale L,,
for the first few jet diameters and so also did Townsend (1956) for X/D > 20.
Experiments are in hand to confirm this and to measure the tangential scales. As
argued above it is anticipated the tangential scale will be similar to the axial scale.
Reference to figure 7 shows that the length-scale L, varies slowly as one moves
radially across the mixing region having a minimum at the point of maximum
shear. This is in agreement with the measurements that Laurence made of two-
wire correlations. The scales he obtained by transforming the spectra decrease
rapidly towards the edge of the jet from a maximum at the point of maximum
shear. This can be explained by his use of the mean velocity for the transformation
which is lower than the convection velocity. When the convection velocity is
used for the transformation the length-scales become more constant.
Time-scales. The moving-axis time-scales were also found to be almost constant
radially across the middle of the mixing region (figure 11) and to increase axially
along the jet. The time-scale was also found to vary almost exactly as 1/Uj.
This can all be explained in terms of the local shear, if it is assumed that the time-
scale is inversely proportional the local shear. The results on figure 6 show that
the shear varies almost directly as the jet velocity, while those on figure 5 show
itissubstantially constant across the middle of the mixing region. The assumption
is supported by the results plotted on figure 12, where the time-scale L, defined
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by equation (2.14) is plotted against the inverse local shear. A fair fit to the points
is given by the relation L. ~ 3/(3U o), (4.2)

and this relation suggests that the inverse of the local shear is a good time-scale
parameter for defining similarity of kinematic properties of the jet flow. The local
shear was found to be expressed by

oU[0zy = 68U (X + kag)sec™ (M, = 0-45), (4.3)

where ka, has the value 0-4in. for the 1in. jet used at Southampton. It seems
reasonable to assume that & depends on the boundary layer at the lip of the jet.
This implies that a similar small constant is missing from equation (4.1).

4.2. Twurbulence intensity

Intensity measurements were difficult to make accurately since their interpreta-
tion depends on the local slope of the voltage-velocity calibration curve. For
the linear set the variation of the slope of the straight line was measured carefully
and was found to be constant within 5 9, at all except very low velocities, where
the variation was 109%,. Provided they were set to standard conditions all wires
gave the same linearity performance. During the experiments it was found that
occasionally the resistance of the wire changed suddenly by as much as 109%,.
This generally occurred during a high-speed run and there is good evidence it
was due to mechanical damage which was not severe enough to break the wire.
After such a change the calibration remained stable once more. Such occurrences
were easy to detect provided simple rechecks were included in the experiments.
With a non-linear wire it was much more difficult to make accurate intensity
measurements, as it was often necessary to recalibrate the wire after each run.

The correlations remain unaffected by such changes, since the magnitude of
the electrical signal does not appear in the relation for the correlation coefficient.
The small changes in slope do not affect the accuracy of the mean velocity mea-
surement, but the sudden changes of resistance do. The effect is less serious here
as it is always immediately obvious when the results are plotted if not before.
This may explain the scatter of Laurence’s results plotted on figure 17, as they
were made with non-linear equipment. In the present experiments the in-
tensity measurements from runs where such difficulty occurred were discarded
and the measurements repeated.

The conclusion from the results in figures 17 and 18 is that the intensity appears
to be proportional to the shear velocity. This is expressed by the relation

(@3} = 0-2L, (08U [0x,). (4.4)
Alternatively, if the local shear is proportional to the Mach number then the
relation (4.4) would become

(@3)F = 0-2K L, (08U [0x,), (4.40)
where K is approximately unity but decreases slowly with increase in the jet

Mach number. We can substitute for L, from (4.1), and from (4.3) for the shear
oU[0xy in (4.4) to give the maximum value of the intensity in the mixing region

(09)h0x = 0-2(0-13X) [6T],/(X +kay)] (M, = 0-45),
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and when X is large, say 10ka,,
[(©2)/Uyliuax = 0-16. (4.5)

This agrees well with all the published measurements in a jet. (See Townsend
1956, Corrsin & Uberoi 1951.)

The change in maximum intensity with jet Mach number is not included in
this analysis unless the shear varies with Mach number. Although it appears
to do so, the way in which it does vary it not yet established with any certainty.

Combining (4.2) and (4.4) leads to the relation
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Fiaure 19. Ratio of time-scale times intensity to length-scale for axial velocity fluctuations.

which should also be satisfied by the measurements. This provides an independent
check of each of the ratio of time-scale to space-scale measurements plotted on
figure 15. The results on figure 12 have therefore been replotted on figure 19
according to equation (4.6). It can be seen that the agreement is good at 4-5in.
downstream but rather more scatter exists for the results obtained 1-5in. down-
stream, particularly near the edge of the mixing region. This is more or less to
be expected when one considers that a small error in the position of the hot wires
becomes relatively more serious as one approaches the jet orifice. Examination
of the results on figure 12 also illustrates this argument with respect to relative
scatter since the time-scale decreases as one approaches the jet orifice.

4.3. Turbulence spectra
The spectra of the turbulence in a frame moving with the turbulence can be found
by transforming the moving-frame auto-correlations such as are shown on figure
10. These, in their turn, have the same shape for the first four or five jet diameters,
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while their scale is inversely proportional to the local shear and can be found
from equation (4.2). Thus, the spectral density distribution of the turbulence can
be estimated once the shear distribution in the jet is known.

The axial distribution of the shear &, is given by equation (4.3), while the radial
distribution may be found from figure 5. Since the shear and intensity all vary
slowly near the region of maximum intensity, the jet turbulence spectrum may
be approximated by that in the middle of the mixing region.

A further simplification is possible since it was found (figure 14) that the
convection velocity of the turbulence varied slowly here and was equal to 0-60,.
The fixed-wire auto-correlations and the moving-frame auto-correlations are
directly related through the convection velocity. The space-scale can also be
found by using this velocity to transform the fixed-wire auto-correlations as
indicated by Laurence. He found good agreement between measured and
estimated scales in the centre of the mixing region where the convection velocity
approximates to the local mean velocity. The validity of this process is confirmed
by the results on figure 15, which shows that the turbulence is well represented
by a frozen pattern convected past a fixed point at the velocity U,, since the time-
scale U, L, is large compared with the space-scale L.

4.4. Estimation of effective source strength

The similarity relations describing the length-scales, shear and intensity can be
inserted into Lilley’s expression (equation (1.6)), for the intensity per unit volume.
For present purposes this involves estimating the quantity L (0 U/axz)‘*?;—i‘ and
ignoring the variation in p? which was not measured. This is shown plotted on
figure 20 as contours on a radial plane with a distorted radial scale. The high-
intensity areas are quite small, and extend mainly over the regions of approxi-
mately constant shear. Close to the jet lip the higher shear is balanced by the
low intensity and length-scales, while more than five diameters downstream,
the fall in shear more than balances the increases in the length-scales. Beyond this
point there is good evidence by Laurence (1956) and others (Townsend 1956)
that the length-scale increases more slowly when the potential core has vanished.
This will reduce the intensity along the axis of the jet more rapidly beyond the
first five or so diameters than the similarity relations suggest. This tendency is
indicated by the results in figure 17. It is worth emphasizing that the contours
on figure 19 refer to the 1in. jet and should be considered in terms of the expres-
sions from which they were calculated. For example, a small change in the:
expression for length-scale would change the distribution close to the jet orifice
considerably. Similarly, in a larger jet, the contours would represent the source
strength distribution close to the jet orifice only.

4.5. Twurbulent structure of the mixing layer

The experiments give some insight into the physical structure of the turbulence
in the mixing region. The results show that there is an initial zone in which the
turbulence intensity grows rapidly. The extent of this is only a few inches and
depends on the dimensions of the boundary-layer flow at the jet orifice. Beyond
this there is a region extending well past the end of the potential cone where the
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intensity is constant, and the flow is in equilibrium. Townsend (1956) shows that
the flow is self-preserving and may be represented by a single family of equations
from 8 to 20 diameters from the jet orifice. The present results indicate that a
further self-preserving region extends from eight or so diameters to close to the
jet orifice, but further experiments are required to extend the similarity relations
for jet turbulence given above to regions beyond the first eight or so diameters.
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Ficure 20. Distribution of source strength in a 1in. jet.

The mixing-region flow consists of a system of eddies which originate near the
jet orifice and grow steadily as they travel down the jet. The growth of the eddies
is dominated by the local mean shear which has a strong influence on the eddy
shape and the distribution of the velocity fluctuations within the eddy. The
shape of the eddies themselves is also indicated by the results. The feed of energy
into rotations about radial axes suggests that they are flattened in the radial
direction and are therefore somewhat disk shaped. The radial distribution of
axial intensity is shown on figure 18, and using this model of the turbulence
structure one ecan speculate on the probable form of the radial distribution of
radial turbulent fluctuations. Since the flow is axially symmetrie, contributions
to the radial fluctuations must come from stretching of axial vorticity filaments.
There is also a mean shear in the axial direction, which is largest at the inner edge
of the mixing region, or on the jet axis beyond the end of the potential core. This
suggests that the radial intensity decreases as one moves radially outwards
across the mixing region, and some measurements by Corrsin (1943) seem to
support this conclusion.

The radial distribution of tangential velocity fluctuations will be similar to
the distribution of axial fluctuations, modified by an extra but smaller con-
tribution from the stretching of the axial filaments particularly at the inner
edge of the mixing region.
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Finally, these arguments suggest an alternative form of equation (4.4), it
being more reasonable to suppose the radial scale of the axial fluctuations L, to
be more closely related to the axial turbulent intensity than the axial scale.
This relation then becomes, for the middle of the mixing zone,

(v%)x%nax = %Lx,(aU/axz)max’ (4'7)

but further measurements on the distribution of L, are required before this
relation can be applied throughout the mixing regiomn.

4.6, Conclusions

The turbulence measurements have shown that there are well-defined similarity
relationships for the first six or eight diameters of the jet flow, as well as those
already known for further downstream. These break down close to the jet orifice
where the shear layer is very thin. Kinematic similarity can be established for
intensity, space-scales, time-scales and spectra in terms of the distance from the
jet orifice X, and a local time-scale which is most suitably expressed in terms of
the inverse of the local shear.

There is some uncertainty concerning the magnitudes of the space-scales over
the first ten diameters, and this requires further investigation. More measure-
ments of the radial distribution of convection velocity are required and a careful
study of the variation of local shear and intensity with Mach number. The
application of the similarity laws to distances beyond six diameters needs
studying as it is anticipated that substantial differences will be found once the
potential core vanishes.

The results confirm the conclusions of previous investigators and in addition
it has been shown that the statistical characteristics of the turbulence can be
expressed fairly accurately by simple relationships.

The authors wish to thank Professor E. J. Richards and other members of the
department for the many helpful suggestions offered during the course of the
work. Thanks are also due to D.S.I.LR. and to the Ministry of Aviation for
financial support and their interest in the investigation and finally to Dr N. Curle
for editorial suggestions in writing this paper.
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